Development of smart coatings incorporated with corrosion indicators that can warn of corrosion through signaling the alteration of pH or metal-ion concentration at the corrosion site, and simultaneously mitigate further corrosion, stands out as a highly efficient and economical approach to address corrosion issues. In this context, the present work provides a comprehensive comparison on the effectiveness of thymol blue (TB) and phenolphthalein (PhPh) in both sensing and inhibiting corrosion on mild steel. While most of the works primarily focused on independently investigating the corrosion indication behavior of different active agents, our study intends to offer valuable insights through the comparative analysis of TB and PhPh in making well-informed decisions when selecting the most effective indicator for a given set of application scenarios. Initially, TB and PhPh were dissolved in a 3.5% NaCl solution, and their ability to indicate and inhibit corrosion on mild steel was verified through a drop test and an electrochemical study, respectively. An electrochemical study and a salt spray test were carried out to evaluate the corrosion sensing and inhibiting capabilities of the coating produced on a mild steel substrate by integrating TB and PhPh in the sol-gel matrix. The synergistic effect of TB and PhPh in sensing and inhibiting corrosion was also studied by combining TB and PhPh in the sol-gel matrix. It was found that TB-based coatings showed approximately 8 times better inhibiting performance (in terms of charge transfer resistance) when compared to PhPh-based coatings, while the PhPh-based coating was around 16 times more sensitive (with respect to concentration and time) in indicating corrosion when compared to TB-based coatings on a mild steel substrate. Nevertheless, the combination of TB and PhPh in a 1:3 ratio incorporated into the sol-gel coating exhibited increased sensitivity in detecting corrosion and showed improved corrosion inhibition on mild steel.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00269DOI Listing

Publication Analysis

Top Keywords

mild steel
24
sensing inhibiting
16
corrosion
14
inhibiting corrosion
12
corrosion mild
12
effectiveness thymol
8
thymol blue
8
blue phenolphthalein
8
phph sensing
8
electrochemical study
8

Similar Publications

Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.

View Article and Find Full Text PDF

Newly synthesized 1-bromo-2-(4-bromophenylsulfonate)-4,4-dimethyl-1-cyclohexenyl-6-one (CHD) as a potential anticorrosive agent in an acidic medium at an elevated temperature range of 305-335 K. This synthesized compound confirmed by spectral characterizations and it acts as a coating on mild steel surfaces in 1 M Hydrochloric acid (HCl) solution through electrochemical reactions. The synthesis of the compound has been discussed, and the Infrared (IR) and Nucleic Magnetic Resonance (NMR) spectral analysis confirmed the derivative.

View Article and Find Full Text PDF

This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Theoretical and Electrochemical Evaluation of Cannabis Sativa L. Extracts as Corrosion Inhibitors for Mild Steel in Acidic Medium.

ChemistryOpen

December 2024

Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, Kenitra, B.P 242, Morocco.

The corrosion of metals in acidic environments remains a significant challenge, driving the search for sustainable and eco-friendly inhibitors derived from natural sources. This study evaluates the corrosion inhibition potential of three extracts from Cannabis sativa L., namely ethanol extract (EET), hexane extract (EHX), and dichloromethane extract (EDM), for mild steel in a 1 M HCl acidic medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!