AI Article Synopsis

  • Hyperglycemia is a common side effect of PI3Kα inhibitors like alpelisib, and early detection is key for effective patient management.
  • This study used data from two clinical trials to build a machine learning model identifying baseline characteristics that predict the risk of developing severe hyperglycemia in patients.
  • The model successfully classified patients into high and low-risk groups, revealing that those at high risk experienced a significantly higher incidence of hyperglycemia and related treatment discontinuations.

Article Abstract

Background: Hyperglycemia is an on-target effect of PI3Kα inhibitors. Early identification and intervention of treatment-induced hyperglycemia is important for improving management of patients receiving a PI3Kα inhibitor like alpelisib. Here, we characterize incidence of grade 3/4 alpelisib-related hyperglycemia, along with time to event, management, and outcomes using a machine learning model.

Methods: Data for the risk model were pooled from patients receiving alpelisib ± fulvestrant in the open-label, phase 1 X2101 trial and the randomized, double-blind, phase 3 SOLAR-1 trial. The pooled population (n = 505) included patients with advanced solid tumors (X2101, n = 221) or HR+/HER2- advanced breast cancer (SOLAR-1, n = 284). External validation was performed using BYLieve trial patient data (n = 340). Hyperglycemia incidence and management were analyzed for SOLAR-1.

Results: A random forest model identified 5 baseline characteristics most associated with risk of developing grade 3/4 hyperglycemia (fasting plasma glucose, body mass index, HbA, monocytes, age). This model was used to derive a score to classify patients as high or low risk for developing grade 3/4 hyperglycemia. Applying the model to patients treated with alpelisib and fulvestrant in SOLAR-1 showed higher incidence of hyperglycemia (all grade and grade 3/4), increased use of antihyperglycemic medications, and more discontinuations due to hyperglycemia (16.7% vs. 2.6% of discontinuations) in the high- versus low-risk group. Among patients in SOLAR-1 (alpelisib + fulvestrant arm) with PIK3CA mutations, median progression-free survival was similar between the high- and low-risk groups (11.0 vs. 10.9 months). For external validation, the model was applied to the BYLieve trial, for which successful classification into high- and low-risk groups with shorter time to grade 3/4 hyperglycemia in the high-risk group was observed.

Conclusions: A risk model using 5 clinically relevant baseline characteristics was able to identify patients at higher or lower probability for developing alpelisib-induced hyperglycemia. Early identification of patients who may be at higher risk for hyperglycemia may improve management (including monitoring and early intervention) and potentially lead to improved outcomes.

Registration: ClinicalTrials.gov: NCT01219699 (registration date: October 13, 2010; retrospectively registered), ClinicalTrials.gov: NCT02437318 (registration date: May 7, 2015); ClinicalTrials.gov: NCT03056755 (registration date: February 17, 2017).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913434PMC
http://dx.doi.org/10.1186/s13058-024-01773-1DOI Listing

Publication Analysis

Top Keywords

grade 3/4
20
hyperglycemia
12
3/4 hyperglycemia
12
patients
9
alpelisib-induced hyperglycemia
8
patients advanced
8
advanced solid
8
solid tumors
8
breast cancer
8
early identification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!