Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: To introduce a three-dimensional convolutional neural network (3D CNN) leveraging transfer learning for fusing PET/CT images and clinical data to predict EGFR mutation status in lung adenocarcinoma (LADC).
Methods: Retrospective data from 516 LADC patients, encompassing preoperative PET/CT images, clinical information, and EGFR mutation status, were divided into training (n = 404) and test sets (n = 112). Several deep learning models were developed utilizing transfer learning, involving CT-only and PET-only models. A dual-stream model fusing PET and CT and a three-stream transfer learning model (TS_TL) integrating clinical data were also developed. Image preprocessing includes semi-automatic segmentation, resampling, and image cropping. Considering the impact of class imbalance, the performance of the model was evaluated using ROC curves and AUC values.
Results: TS_TL model demonstrated promising performance in predicting the EGFR mutation status, with an AUC of 0.883 (95%CI = 0.849-0.917) in the training set and 0.730 (95%CI = 0.629-0.830) in the independent test set. Particularly in advanced LADC, the model achieved an AUC of 0.871 (95%CI = 0.823-0.919) in the training set and 0.760 (95%CI = 0.638-0.881) in the test set. The model identified distinct activation areas in solid or subsolid lesions associated with wild and mutant types. Additionally, the patterns captured by the model were significantly altered by effective tyrosine kinase inhibitors treatment, leading to notable changes in predicted mutation probabilities.
Conclusion: PET/CT deep learning model can act as a tool for predicting EGFR mutation in LADC. Additionally, it offers clinicians insights for treatment decisions through evaluations both before and after treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913633 | PMC |
http://dx.doi.org/10.1186/s12880-024-01232-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!