Background: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited.
Results: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome.
Conclusions: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910785 | PMC |
http://dx.doi.org/10.1186/s12864-024-10141-4 | DOI Listing |
Sci Data
November 2024
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
The Patagonian toothfish (Dissostichus eleginoides) belongs to the Actinopterygii class, and the suborder Notothenioidei, which lives in cold waters in the Southern Hemisphere. We performed assembly and annotation, and we integrated the Illumina short-read sequencing for polishinng, PacBio long-read sequencing for contig-level assembly, and Hi-C sequencing technology to obtain high-quality of chromosome-level genome assembly. The final assembly analysis resulted in a total of 495 scaffolds, a genome size of 844.
View Article and Find Full Text PDFPLoS One
May 2024
Department of Climate Change, Australian Antarctic Division, Energy, The Environment and Water, Kingston, Tasmania, Australia.
The grey rockcod, Lepidonotothen squamifrons is an important prey species for seals, penguins and Patagonian toothfish (Dissostichus eleginoides) in the Southern Ocean. Across the Kerguelen Plateau, the species was fished to commercial extinction (ca. 152 000 tonnes between 1971 and 1978) prior to the declaration of the French Exclusive Economic Zone in 1979 and the Australian Fishing Zone in 1981.
View Article and Find Full Text PDFBMC Genomics
March 2024
Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK.
Background: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish.
View Article and Find Full Text PDFMost marine apex predators are keystone species that fundamentally influence their ecosystems through cascading top-down processes. Reductions in worldwide predator abundances, attributed to environmental- and anthropogenic-induced changes to prey availability and negative interactions with fisheries, can have far-reaching ecosystem impacts. We tested whether the survival of killer whales () observed at Marion Island in the Southern Indian Ocean correlated with social structure and prey variables (direct measures of prey abundance, Patagonian toothfish fishery effort, and environmental proxies) using multistate models of capture-recapture data spanning 12 years (2006-2018).
View Article and Find Full Text PDFInt J Mol Sci
April 2023
Biological Faculty, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia.
In the vast majority of Animalia genomes, the 5S rRNA gene repeats are located on chromosomes outside of the 45S rDNA arrays of the nucleolar organiser (NOR). We analysed the genomic databases available and found that a 5S rDNA sequence is inserted into the intergenic spacer (IGS) between the 45S rDNA repeats in ten species of the family Nototheniidae (Perciformes, Actinopterigii). We call this sequence the NOR-5S rRNA gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!