Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957479PMC
http://dx.doi.org/10.1038/s41591-024-02807-zDOI Listing

Publication Analysis

Top Keywords

derivation primary
8
epithelial organoids
8
fetal stem
8
stem cells
8
organoids
6
cells
6
fetal
5
single-cell guided
4
prenatal
4
guided prenatal
4

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Background: Existing risk evaluation tools underperform in predicting intensive care unit (ICU) admission for patients with the Coronavirus Disease 2019 (COVID-19). This study aimed to develop and evaluate an accurate and calculator-free clinical tool for predicting ICU admission at emergency room (ER) presentation.

Methods: Data from patients with COVID-19 in a nationwide German cohort (March 2020-January 2023) were analyzed.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!