Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm.

J Imaging Inform Med

Department of Radiology, Neuroradiology and Nuclear Medicine, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany.

Published: August 2024

Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman's Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300758PMC
http://dx.doi.org/10.1007/s10278-024-01033-wDOI Listing

Publication Analysis

Top Keywords

sufficient increased
12
coronary computed
8
computed tomography
8
tomography angiography
8
motion artifacts
8
rca decreased
8
mca
5
decreased
5
optimizing coronary
4
angiography novel
4

Similar Publications

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Background/purpose: Inferior alveolar nerve (IAN) injury is the most serious complication associated with dental implant surgery, posing difficulties in treatment and potential for permanent disabilities. This study aimed to identify patient-related risk factors for IAN injury during implant placement and to investigate sensory disturbances depending on whether the implant was removed.

Materials And Methods: Twenty-eight patients with implant-related IAN injury were included.

View Article and Find Full Text PDF

The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.

View Article and Find Full Text PDF

Background: High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog () is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!