The laser-damage performance characteristics of potassium dihydrogen phosphate (KDP) samples under exposure to a distinctive broadband incoherent laser pulse are investigated. A laser system providing such pulses is intended to explore improved energy-coupling efficiency on the target in direct-drive inertial confinement fusion experiments and provides incoherent bandwidths as large as 10 THz in a nanosecond pulse. A consequence of this bandwidth is very rapid fluctuations in intensity capable of reaching maxima much larger than the average intensity within the pulse. A custom damage-test station has been built to perform measurements with broadband incoherent pulses in order to determine what effect these fast and high-intensity oscillations have on laser damage. A set of experiments under different bandwidth and beam configurations shows the effect to be minimal when probing bulk damage in KDP. Modeling indicates this behavior is supported by long electron-relaxation times compared to the source-field fluctuations, following excitation of individual electrons in the conduction band. The results help better understand the laser-induced-damage mechanisms in KDP, and its ability to operate in broadband temporally incoherent high-energy lasers that may be particularly suitable for future laser-fusion energy systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912715PMC
http://dx.doi.org/10.1038/s41598-024-55732-zDOI Listing

Publication Analysis

Top Keywords

incoherent laser
8
bulk damage
8
potassium dihydrogen
8
dihydrogen phosphate
8
broadband incoherent
8
thz-bandwidth incoherent
4
laser
4
laser radiation
4
radiation bulk
4
damage potassium
4

Similar Publications

Unified description of thermal and nonthermal laser-induced ultrafast structural changes in materials.

Sci Rep

December 2024

Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.

The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.

View Article and Find Full Text PDF

Photochemical initiation of polariton-mediated exciton propagation.

Nanophotonics

June 2024

Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.

Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.

View Article and Find Full Text PDF

Expansion microscopy (ExM) enables sub-diffraction imaging by physically expanding labeled tissue samples. This increases the tissue volume relative to the instrument point spread function (PSF), thereby improving the effective resolution by reported factors of 4 - 20X [1, 2]. However, this volume increase dilutes the fluorescence signal, reducing both signal-to noise ratio (SNR) and acquisition speed.

View Article and Find Full Text PDF

Effect of film thickness on phase structure of epitaxial non-doped hafnium oxide films.

Micron

December 2024

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China. Electronic address:

Article Synopsis
  • - HfO (hafnium oxide) is a promising dielectric material in electronics, noted for its ferroelectric properties since 2011, with research focusing on stabilizing its polar o-phase structure.
  • - The study involved growing non-doped HfO thin films on SrTiO substrates using pulsed laser deposition (PLD), revealing that as film thickness increases, surface roughness also increases.
  • - Analysis techniques like atomic force microscopy and X-ray photoelectron spectroscopy confirmed the films' purity and structural quality, while electron microscopy studies showed the HfO/SrTiO interface is atomically abrupt and incoherent.
View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!