Ebullition transports large amounts of the potent greenhouse gas methane (CH ) from aquatic sediments to the atmosphere. River beds are a main source of biogenic CH , but emission estimates and the relative contribution of ebullition as a transport pathway are poorly constrained. This study meets a need for more direct measurements with a whole-year data set on CH ebullition from a small stream in southern Germany. Four gas traps were installed in a cross section in a river bend, representing different bed substrates between undercut and slip-off slope. For a comparison, diffusive fluxes were estimated from concentration gradients in the sediment and from measurements of dissolved CH in the surface water. The data revealed highest activity with gas fluxes above 1000 ml m  d in the center of the stream, sustained ebullition during winter, and a larger contribution of ebullitive compared to diffusive CH fluxes. Increased gas fluxes from the center of the river may be connected to greater exchange with the surface water, thus increased carbon and nutrient supply, and a higher sediment permeability for gas bubbles. By using stable isotope fractionation, we estimated that 12-44% of the CH transported diffusively was oxidized. Predictors like temperature, air pressure drop, discharge, or precipitation could not or only poorly explain temporal variations of ebullitive CH fluxes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310342PMC
http://dx.doi.org/10.1038/s41598-024-54760-zDOI Listing

Publication Analysis

Top Keywords

diffusive fluxes
8
surface water
8
gas fluxes
8
ebullition
5
gas
5
fluxes
5
high methane
4
methane ebullition
4
ebullition year
4
year regulated
4

Similar Publications

Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane.

Membranes (Basel)

January 2025

Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 H. Jordan Str., 41-808 Zabrze, Poland.

One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup.

View Article and Find Full Text PDF

Spontaneous coal fires are a significant source of greenhouse gas emissions, contributing to global warming. However, the lack of reliable estimation methods and research has obscured the full environmental impact of these emissions. This paper presents a novel quantification method for fugitive carbon emissions from spontaneous coal combustion.

View Article and Find Full Text PDF

Next-generation metabolic models informed by biomolecular simulations.

Curr Opin Biotechnol

January 2025

Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA. Electronic address:

Metabolic modeling is essential for understanding the mechanistic bases of cellular metabolism in various organisms, from microbes to humans, and the design of fitter microbial strains. Metabolic networks focus on the overall fluxes through biochemical reactions that implicitly rely on several biochemical processes, such as active or diffusive uptake (or export) of nutrients (or metabolites), enzymatic turnover of metabolites, and metal-cofactor enzyme interactions. Despite independent progress in biomolecular simulations, they have yet to be integrated to inform metabolic models.

View Article and Find Full Text PDF

Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.

View Article and Find Full Text PDF

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!