Climate change mitigation generally require rapid decarbonization in the power sector, including phase-out of fossil fuel-fired generators. Given recent technological developments, co-firing of hydrogen or ammonia, could help decarbonize fossil-based generators, but little is known about how its effects would play out globally. Here, we explore this topic using an energy system model. The results indicate that hydrogen co-firing occurs solely in stringent mitigation like 1.5 °C scenarios, where around half of existing coal and gas power capacity can be retrofitted for hydrogen co-firing, reducing stranded capacity, mainly in the Organization for Economic Co-operation and Development (OECD) countries and Asia. However, electricity supply from co-firing generators is limited to about 1% of total electricity generation, because hydrogen co-firing is mainly used as a backup option to balance the variable renewable energies. The incremental fuel cost of hydrogen results in lower capacity factor of hydrogen co-fired generators, whereas low-carbon hydrogen contributes to reducing emission cost associated with carbon pricing. While hydrogen co-firing may play a role in balancing intermittency of variable renewable energies, it will not seriously delay the phase-out of fossil-based generators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912371 | PMC |
http://dx.doi.org/10.1038/s41467-024-46101-5 | DOI Listing |
Sci Total Environ
December 2024
Laboratory of Renewable Energies and Advanced Materials (LERMA), College of Engineering and Architecture, International University of Rabat (IUR), IUR Campus, Technopolis Park, Rocade Rabat-Sale, Sala Al Jadida 11103, Morocco. Electronic address:
This research addresses the global imperative to tackle climate change by evaluating different carbon capture technologies based on various criteria in hard-to-electrify sectors such as steel, cement, petrochemicals, and fertilizers, providing practical insights for policymakers engaged in the shift toward low-carbon industrial processes. The study employs a Multi-Criteria Decision-Making (MCDM) approach, specifically the Analytical Hierarchy Process (AHP), using a systematic and objective evaluation process, integrating rigorous pairwise comparisons using the Saaty scale through logical reasoning, along with eigenvalue calculations, resulting in a criteria and strategy ranking. In evaluating carbon capture technologies for heavy industry, external support (regulatory adherence, global collaboration, and financial incentives) is crucial for technology evaluation, which carries the highest weight (21.
View Article and Find Full Text PDFNat Commun
March 2024
Kyoto University, C1-3, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan.
Climate change mitigation generally require rapid decarbonization in the power sector, including phase-out of fossil fuel-fired generators. Given recent technological developments, co-firing of hydrogen or ammonia, could help decarbonize fossil-based generators, but little is known about how its effects would play out globally. Here, we explore this topic using an energy system model.
View Article and Find Full Text PDFEnviron Res
April 2021
Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, I-Lan, 260, Taiwan.
Sludge dewatering is a matter of great concern to reduce the volume of sludge, stabilize its organic components, and achieve resource utilization. This study investigates sludge dewatering by microwave torrefaction along with the production of sludge solid biofuel at 480-800 W combined with durations of 5-25 min. Proximate analysis, calorific value analysis, thermogravimetric analysis, and scanning electron microscopy observations are employed to evaluate the dewatering degree, fuel properties, and energy efficiency of the torrefaction process.
View Article and Find Full Text PDFJ Hazard Mater
April 2013
Department of Civil Engineering, Technical University of Denmark, Denmark.
Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!