Normal cells grow and divide only when instructed to by signaling pathways stimulated by exogenous growth factors. A nearly ubiquitous feature of cancer cells is their capacity to grow independent of such signals, in an uncontrolled, cell-intrinsic manner. This property arises due to the frequent oncogenic activation of core growth factor signaling pathway components, including receptor tyrosine kinases, PI3K-AKT, RAS-RAF, mTORC1, and MYC, leading to the aberrant propagation of pro-growth signals independent of exogenous growth factors. The growth of both normal and cancer cells requires the acquisition of nutrients and their anabolic conversion to the primary macromolecules underlying biomass production (protein, nucleic acids, and lipids). The core growth factor signaling pathways exert tight regulation of these metabolic processes and the oncogenic activation of these pathways drive the key metabolic properties of cancer cells and tumors. Here, we review the molecular mechanisms through which these growth signaling pathways control and coordinate cancer metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444256 | PMC |
http://dx.doi.org/10.1101/cshperspect.a041543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!