Particulate matter represents one of the most severe air pollutants globally. Organic aerosol (OA) comprises 30-70 % of submicron particle mass in urban areas. An effective way to mitigate OA particulate pollutants is to reduce the formation of secondary organic aerosol (SOA). Here, we studied the effect of titanium dioxide (TiO) photocatalytic seeds on the formation and mitigation of SOA particles from α-pinene or toluene oxidation in chamber. For the first time, we discovered that under ultraviolet (UV) irradiation, the presence of TiO directly removed internally mixed α-pinene SOA mass by 53.7 % within 200 mins, and also directly removed SOA matter in an externally mixed state that is not in direct contact with TiO surface: the mass of externally mixed α-pinene SOA was reduced by 21.9 % within 81 mins, and the toluene SOA mass was reduced by 46.6 % in 145mins. In addition, the presence of TiO effectively inhibited the formation of SOA particles with a SOA mass yield of zero. This study brings up an innovative concept for air pollution control - the direct photocatalytic degradation of OA with aid of TiO-based photocatalysts. Our novel findings will potentially bring practical applications in air pollution abatement and regional, even global aerosol-climate interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171323 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Environment, Nanjing Normal University, Nanjing, China.
Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, Kerala, India.
The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Physics, DDU Gorakhpur University, Gorakhpur, 273009, India.
The pristine Himalayas are sensitive to pollutants from different source regions, including its foothills that have adverse effects on air quality and climate. Despite this, there are no observations of aromatic hydrocarbons in the central Himalayas. Thus, online observations of aromatics (C-C, defined here as BTEX) were conducted for the first time at the mountain site (Nainital, 1958 m) in the central Himalayas during January 2017-December 2022 period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!