The aim of this study was to evaluate two moving bed biofilm reactors (MBBR) without nitrifying bacteria inoculation. Biofilms and viable bacterial colonies were evaluated after 124 days. MBBR bioreactors received water from Oreochromis niloticus fish farming and water quality parameters were monitored daily. Four distinct phases with different fish stocking density were established.: phase 1 (2.40 kg m), phase 2 (4.95 kg m), phase 3 (8.71 kg m) and phase 4 (12.23 kg m). The successful maturation of the bioreactors occurred around on the 100th experimental day when the nitration rate increased to 57 % in MBBR1 and 38 % in MBBR2. 105 species were identified in the biofilms, which were grouped into 65 genera, three of which were essential: Pseudomonas (21.7 %), Nitrospira (15.1 %) and Gemmobacter (11.2 %). MBBR start-up without bacterial inoculation is time-consuming, however, strengthened by important nitrifying groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130527 | DOI Listing |
Bioresour Technol
January 2025
Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy. Electronic address:
In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Nexom, Winnipeg, Manitoba R2J 3R8, Canada.
This pilot-scale study investigated nitrifying moving bed biofilm reactors (MBBRs) in a post-lagoon treatment setup over two years to evaluate the impact of seasonal ammonia fluctuations on winter nitrification. In Year 2, reactors without fall ammonia starvation achieved significantly higher winter ammonia removal (97.2 ± 1.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Biomedical Signals and Systems Group, University of Twente, 7522 NB Enschede, The Netherlands.
Background/objectives: Measuring the physical functioning of older hip fracture patients using wearables is desirable, with physical activity monitoring offering a promising approach. However, it is first important to assess physical activity in healthy older adults. This study quantifies physical functioning with physical activity parameters and assesses those parameters in community-dwelling older adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!