Background: Numerous studies have explored the therapeutic potential of microRNA (miR) in myocardial infarction (MI) treatment. This study focuses on the role of miR-322-5p in MI, particularly in its regulatory interaction with B-cell translocation gene 2 (BTG2).
Materials And Methods: Expression levels of miR-322-5p and BTG2 were assessed in a rat MI model. Adenovirus altering miR-322-5p or BTG2 expression were administered to MI rats. Evaluation included cardiac function, inflammation, myocardial injury, pathological changes, apoptosis, and NF-κB pathway-related genes in MI rats post-targeted treatment. The miR-322-5p and BTG2 targeting relationship was investigated.
Results: MI rats exhibited low miR-322-5p and high BTG2 expression in the myocardial tissues. Restoration of miR-322-5p enhanced cardiac function, alleviated inflammation and myocardial injury, mitigated pathological changes and apoptosis, and deactivated the NF-κB pathway in MI rats. BTG2 expression was negatively-regulated by miR-322-5p. Overexpressed BTG2 counteracted miR-322-5p-induced cardioprotection on MI rats.
Conclusion: This study provides evidence that miR-322-5p protects against MI by suppressing BTG2 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjms.2024.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!