Identification of a novel MT-ND3 variant and restoring mitochondrial function by allotopic expression of MT-ND3 gene.

Mitochondrion

Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

Published: May 2024

Mitochondrial diseases are caused by nuclear, or mitochondrial DNA (mtDNA) variants and related co-factors. Here, we report a novel m.10197G > C variant in MT-ND3 in a patient, and two other patients with m.10191 T > C. MT-ND3 variants are known to cause Leigh syndrome or mitochondrial complex I deficiency. We performed the functional analyses of the novel m.10197G > C variant that significantly lowered MT-ND3 protein levels, causing complex I assembly and activity deficiency, and reduction of ATP synthesis. We adapted a previously described re-engineering technique of delivering mitochondrial genes into mitochondria through codon optimization for nuclear expression and translation by cytoplasmic ribosomes to rescue defects arising from the MT-ND3 variants. We constructed mitochondrial targeting sequences along with the codon-optimized MT-ND3 and imported them into the mitochondria. To achieve the goal, we imported codon-optimized MT-ND3 into mitochondria in three patients with m.10197G > C and m.10191 T > C missense variants in the MT-ND3. Nuclear expression of the MT-ND3 gene partially restored protein levels, complex I deficiency, and significant improvement of ATP production indicating a functional rescue of the mutant phenotype. The codon-optimized nuclear expression of mitochondrial protein and import inside the mitochondria can supplement the requirements for ATP in energy-deficient mitochondrial disease patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2024.101858DOI Listing

Publication Analysis

Top Keywords

nuclear expression
12
mt-nd3
10
mitochondrial
8
expression mt-nd3
8
mt-nd3 gene
8
novel m10197g > c
8
m10197g > c variant
8
mt-nd3 variants
8
complex deficiency
8
protein levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!