A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Demethylzeylasteral protects against renal interstitial fibrosis by attenuating mitochondrial complex I-mediated oxidative stress. | LitMetric

Ethnopharmacological Relevance: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood.

Aim Of The Study: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms.

Materials And Methods: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments.

Results: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF.

Conclusions: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.117986DOI Listing

Publication Analysis

Top Keywords

effects dml
12
dml
10
renal interstitial
8
interstitial fibrosis
8
mitochondrial complex
8
oxidative stress
8
dml rif
8
therapeutic effects
8
rif
6
demethylzeylasteral protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!