At present, traditional analytical methods suffer from issues such as complex operation, expensive equipment, and a lengthy testing time. Electrochemical sensors have shown great advantages and application potential as an alternative solution. In this study, we proposed a novel semiautomated electrochemical sensor array (SAESA) platform. The sensor array was fabricated using screen-printed technology with a tubular design where all electrodes were printed on the inner wall. The integration of the tubular sensor array with a pipet allows for a semiautomated process including sampling and rinsing, which simplifies operation and reduces overall time. Each working electrode in the tubular sensor array underwent distinct decoration to get specific sensing responses toward the target analytes in a mixture environment (e.g., blood samples). To demonstrate the applicability of the developed sensing platform for simultaneous multianalyte detection, we chose antibiotic treatment for inflammatory infection as a model scenario and continuously measured three biomarkers, namely, tigecycline (TGC), procalcitonin (PCT), and alanine aminotransferase (ALT). The detection limits were 0.3 μM, 0.3 ng/L, and 2.76 U/L, respectively. The developed semiautomated electrochemical sensor array exhibits characteristics such as rapid and simple operation, portability, good selectivity, and excellent stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c02346DOI Listing

Publication Analysis

Top Keywords

sensor array
24
semiautomated electrochemical
12
electrochemical sensor
12
novel semiautomated
8
tubular sensor
8
sensor
6
array
6
construction novel
4
semiautomated
4
electrochemical
4

Similar Publications

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

Objective: Accurate measurement of pelvic floor muscle (PFM) strength is crucial for the management of pelvic floor disorders. However, the current methods are invasive, uncomfortable, and lack standardization. This study aimed to introduce a novel noninvasive approach for precise PFM strength quantification by leveraging extracorporeal surface perineal pressure (ESPP) measurements and machine learning algorithms.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!