Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels.

Mar Environ Res

Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile.

Published: April 2024

Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106422DOI Listing

Publication Analysis

Top Keywords

transient species
16
ecosystem
9
ecosystem multifunctionality
8
ecosystem functioning
8
ecosystem functions
8
species ecosystem
8
oxygen consumption
8
transient
4
species driving
4
driving ecosystem
4

Similar Publications

Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.

View Article and Find Full Text PDF

A simple new method to determine leaf specific heat capacity.

Plant Methods

January 2025

Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands.

Background: Quantifying plant transpiration via thermal imaging is desirable for applications in agriculture, plant breeding, and plant science. However, thermal imaging under natural non-steady state conditions is currently limited by the difficulty of quantifying thermal properties of leaves, especially specific heat capacity (C). Existing literature offers only rough estimates of C and lacks simple and accurate methods to determine it.

View Article and Find Full Text PDF

Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe through TRPML1 channel.

Nat Commun

January 2025

Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages.

View Article and Find Full Text PDF

Bat ectoparasites (Diptera: Streblidae and Acari: Spinturnicidae) from an urban area in the Amazon-Cerrado transition.

Vet Parasitol Reg Stud Reports

January 2025

Secretaria Municipal de Saúde de Cuiabá, Diretoria de Vigilância em Saúde, Unidade de Vigilância de Zoonoses, Brazil.

Parasites significantly influence ecosystems by controlling host populations and spreading diseases, thereby impacting ecological balances. In the Neotropics, hematophagous bat flies and mites are common ectoparasites of bats. The state of Mato Grosso, Brazil, hosts a diverse bat fauna across its Amazon Forest, Cerrado, and Pantanal habitats.

View Article and Find Full Text PDF

The small-sized cervid Procervulus is considered as the most basal member of the Cervidae and one of the earliest ruminants bearing antler-like appendages. The Iberian Miocene record of this stem-cervid is extensively documented and largely overlaps with the Miocene Climatic Optimum (MCO), a transient period of global warming of particular interest when comparing present and near future conditions. Despite receiving a substantial amount of attention, histological studies on Procervulus are very scarce and only limited to postcranial remains of Procervulus praelucidus from Germany (MN3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!