Water-energy sustainability will depend upon the rapid development of advanced pressure-driven separation membranes. Although energy-efficient, water-treatment membranes are constrained by ubiquitous fouling, which may be alleviated by engineering self-cleaning membrane interfaces. In this study, a metal-polyphenol network was designed to direct the armorization of catalytic nanofilms (ca. 18 nm) on inert polymeric membranes. The chelation-directed mineralized coating exhibits high polarity, superhydrophilicity, and ultralow adhesion to crude oil, enabling cyclable crude oil-in-water emulsion separation. The in-place flux recovery rate exceeded 99.9%, alleviating the need for traditional ex situ cleaning. The chelation-directed nanoarmored membrane exhibited 48-fold and 6.8-fold figures of merit for in-place self-cleaning regeneration compared to the control membrane and simple hydraulic cleaning, respectively. Precursor interaction mechanisms were identified by density functional theory calculations. Chelation-directed armorization offers promise for sustainable applications in catalysis, biomedicine, environmental remediation, and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945774 | PMC |
http://dx.doi.org/10.1073/pnas.2319390121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!