Space-time (ST) wave packets are propagation-invariant pulsed optical beams that travel freely in dielectrics at a tunable group velocity without diffraction or dispersion. Because ST wave packets maintain these characteristics even when only one transverse dimension is considered, they can realize surface-bound waves (e.g., surface plasmon polaritons at a metal-dielectric interface, which we call ST-SPPs) that have the same unique characteristics as their freely propagating counterparts. However, because the spatiotemporal spectral structure of ST-SPPs is key to their propagation invariance on the metal surface, their excitation methodology must be considered carefully. Using finite-difference time-domain simulations, we show that an appropriately synthesized ST wave packet in free space can be coupled to an ST-SPP via a single nanoscale slit inscribed in the metal surface. Our calculations confirm that this excitation methodology yields surface-bound ST-SPPs that are localized in all dimensions (and can thus be considered as plasmonic "bullets"), which travel rigidly at the metal-dielectric interface without diffraction or dispersion at a tunable group velocity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.508044 | DOI Listing |
Sci Rep
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.
In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA. Electronic address:
Clostridioides difficile (C. difficile) infection (CDI) is a life-threatening healthcare-associated infection occurring worldwide. C.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!