Future far-infrared astrophysics observatories will require focal plane arrays containing thousands of ultrasensitive, superconducting detectors, each of which require efficient optical coupling to the telescope fore-optics. At longer wavelengths, many approaches have been developed, including feedhorn arrays and macroscopic arrays of lenslets. However, with wavelengths as short as 25 µm, optical coupling in the far infrared remains challenging. In this paper, we present an approach to fabricate far-infrared monolithic silicon microlens arrays using grayscale lithography and deep reactive ion etching. The fabricated microlens arrays presented here are designed for two different wavebands: 25-40 µm and 135-240 µm. The microlens arrays have sags as deep as 150 µm, are hexagonally packed with a pixel pitch of 900 µm, and have an overall size as large as 80 by 15 mm. We compare an as-fabricated lens profile to the design profile and calculate that the fabricated lenses would achieve 84% encircled power for the designed detector, which is only 3% less than the designed performance. We also present methods developed for antireflection coating microlens arrays and for a silicon-to-silicon die bonding process to hybridize microlens arrays with detector arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.510409DOI Listing

Publication Analysis

Top Keywords

microlens arrays
24
arrays
10
monolithic silicon
8
silicon microlens
8
far-infrared astrophysics
8
optical coupling
8
microlens
6
arrays far-infrared
4
astrophysics future
4
future far-infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!