A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of a laser's linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the coherence envelope spectrum serves as a basis for estimating the laser's linewidth. By creating a plot of the coefficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the linewidth of lasers characterized as narrow or ultranarrow.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.510265DOI Listing

Publication Analysis

Top Keywords

lorentzian spectrum
16
demodulated lorentzian
12
laser linewidth
8
optimal demodulated
8
laser's linewidth
8
coherence envelope
8
envelope spectrum
8
spectrum
7
linewidth
6
narrow laser
4

Similar Publications

This study analyzed the spectral response of EBT3, EBT4, and EBT-XD radiochromic films using absorption spectroscopy. The primary focus was on characterizing the evolution of spectral signatures across a range of absorbed doses, thereby elucidating the unique dose-dependent response profiles of each film type. Ten samples of each film type were subjected to open field irradiation within their designated dose ranges (1-20 Gy for EBT3 and EBT4, 1-50 Gy for EBT-XD).

View Article and Find Full Text PDF
Article Synopsis
  • Dynamic glucose enhanced (DGE) MRI, using techniques like CEST or CESL, aims to analyze glucose uptake but faces challenges with low sensitivity and motion artifacts.
  • The new method proposed, called DS-DGE MRI, leverages linewidth broadening in water saturation spectra during glucose infusion to improve measurements.
  • Initial tests on brain tumor patients show that DS-DGE MRI produces detailed area-under-the-curve maps that effectively highlight tumor regions, indicating its potential over existing imaging techniques.
View Article and Find Full Text PDF

Application of Odd-Order Derivatives in Fourier Transform Nuclear Magnetic Resonance Spectroscopy toward Quantitative Deconvolution.

ACS Omega

August 2024

Fujian Superimposegraph Co., Ltd, Floor 20-1402. 338, Hualin Road, Fuzhou, Fujian 350013, China.

When Fourier transform (FT) spectrum peaks are overlapped, primary maxima of odd-order derivatives can be used to evaluate their independent intensities. We studied the feasibility of higher odd-order derivatives on Lorentzian peak shape and magnitude peak shape. Simulation studies for FT nuclear magnetic resonance (NMR) spectroscopy demonstrated good results toward quantitative deconvolution of overlapping FT spectrum peaks.

View Article and Find Full Text PDF

This study introduces a novel paradigm for achieving widely tunable many-body Fano quantum interference in low-dimensional semiconducting nanostructures, beyond the conventional requirement of closely matched energy levels between discrete and continuum states observed in atomic Fano systems. Leveraging Floquet engineering, the remarkable tunability of Fano lineshapes is demonstrated, even when the original discrete and continuum states are separated by over 1 eV. Specifically, by controlling the quantum pathways of discrete phonon Raman scattering using femtosecond laser pulses, the Raman intermediate states across the excitonic Floquet band are tuned.

View Article and Find Full Text PDF

Although the information obtained from in vivo proton magnetic resonance spectroscopy (H MRS) presents a complex-valued spectrum, spectral quantification generally employs linear combination model (LCM) fitting using the real spectrum alone. There is currently no known investigation comparing fit results obtained from LCM fitting over the full complex data versus the real data and how these results might be affected by common spectral preprocessing procedure zero filling. Here, we employ linear combination modeling of simulated and measured spectral data to examine two major ideas: first, whether use of the full complex rather than real-only data can provide improvements in quantification by linear combination modeling and, second, to what extent zero filling might influence these improvements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!