AI Article Synopsis

  • Accurate estimation of carrier fringe frequency is crucial for effectively demodulating off-axis digital holograms, particularly when dealing with phase objects.
  • The traditional approach of defining carrier frequency based on the amplitude peak of the cross-term in the Fourier transform may not always hold true for these types of holograms.
  • A new definition is proposed, using the centroid of the power spectrum of the cross-term, which proves to be more reliable, less affected by noise, and results in a smoother representation of the demodulated wave.

Article Abstract

Accurate estimation of carrier fringe frequency is essential for the demodulation of off-axis digital holograms. The fringe frequency is often associated with the amplitude peak of the cross-term in the two-dimensional Fourier transform of a digital hologram. We point out that this definition of carrier frequency is not valid in general for holograms associated with phase objects. We examine the carrier-envelope representation for digital holograms from the viewpoint of Mandel's criterion [J. Opt. Soc. Am.57, 613 (1967)10.1364/JOSA.57.000613]. An appropriate definition of carrier frequency is observed to be the centroid of the power spectrum associated with the cross term. This definition is shown to apply uniformly to holograms associated with phase objects, is robust to noise, and leads to the smoothest (or least fluctuating) envelope representation for the demodulated object wave. The proposed definition is illustrated with simulated as well as experimentally recorded off-axis holograms.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.505663DOI Listing

Publication Analysis

Top Keywords

digital holograms
12
phase objects
12
fringe frequency
8
definition carrier
8
carrier frequency
8
holograms associated
8
associated phase
8
holograms
6
carrier-frequency estimation
4
digital
4

Similar Publications

Digital technologies, such as virtual and augmented reality (VR and AR) are mainly used in the preclinical and clinical phases in neurosurgery and orthopedics. In contrast, they are used less frequently in visceral surgery as the intraoperative deformation is challenging for the clinical use. The application of VR is used successfully particularly in education and training.

View Article and Find Full Text PDF

In order to address the issue of low effective bandwidth ratio in off-axis digital holography, which is caused by the impact of zeroth- and first-order terms on the first-order term, an improved digital holographic reconstruction algorithm by zeroth-order term elimination based on the Riesz transform is proposed in this paper. First, an off-axis hologram is convolved with the Riesz kernels. Then, in the spectrum, the zeroth-order term is effectively eliminated by a singularity at the origin of the Riesz kernels, which can improve the effective bandwidth ratio and make the best use of the bandwidth.

View Article and Find Full Text PDF

Information multiplexing from optical holography to multi-channel metaholography.

Nanophotonics

December 2023

School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.

Article Synopsis
  • - Holography is crucial for advancing various technologies like 3D displays, LiDAR, optical encryption, and AI, by facilitating effective optical information storage and processing.
  • - The review discusses the evolution from traditional volume holograms to modern digital holography using ultrathin metasurfaces, highlighting holographic multiplexing and fabrication techniques.
  • - The potential applications of metasurface holography are explored, particularly in high bandwidth scenarios that enhance sensitivity to light's orbital angular momentum, with a look towards future advancements in the field.
View Article and Find Full Text PDF

Thermally tunable binary-phase VO metasurfaces for switchable holography and digital encryption.

Nanophotonics

March 2024

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.

Article Synopsis
  • Metasurface holography aims to create high-quality holographic images using nanostructured materials but has faced challenges in dynamic tuning, especially in the visible light range.
  • This research introduces a thermally tunable metasurface made from vanadium dioxide (VO) nanofins that can generate variable holographic images by changing temperature, effectively leveraging VO's transition between insulator and metal states.
  • The study highlights the potential applications of this technology in high-security areas such as digital encryption, where distinct images can be displayed based on thermal conditions, emphasizing its versatility for dynamic displays and anti-counterfeiting measures.
View Article and Find Full Text PDF

The current state of affairs in the field of using polymer hydrogels for the creation of innovative systems for signal and image processing, of which computing is a special case, is analyzed. Both of these specific examples of systems capable of forming an alternative to the existing semiconductor-based computing technology, but assuming preservation of the used algorithmic basis, and non-trivial signal converters, the nature of which requires transition to fundamentally different algorithms of data processing, are considered. It is shown that the variability of currently developed information processing systems based on the use of polymers, including polymer hydrogels, leads to the need to search for complementary algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!