Digital holographic multiwavelength sensor systems integrated in the production line on multi-axis systems such as robots or machine tools are exposed to unknown, complex vibrations that affect the measurement quality. To detect vibrations during the early steps of hologram reconstruction, we propose a deep learning approach using a deep neural network trained to predict the standard deviation of the hologram phase. The neural network achieves 96.0% accuracy when confronted with training-like data while it achieves 97.3% accuracy when tested with data simulating a typical production environment. It performs similar to or even better than comparable classical machine learning algorithms. A single prediction of the neural network takes 35 µs on the GPU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.507303 | DOI Listing |
J Cheminform
January 2025
Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Bangkok Hospital Dental Center Holistic Care and Dental Implant, Bangkok Hospital, Bangkok, 10310, Thailand.
Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.
View Article and Find Full Text PDFBMC Med Res Methodol
January 2025
Leeds Institute of Clinical Trials Research, University of Leeds, Clarendon Way, Leeds, LS2 9NL, UK.
Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
Purpose: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.
Material And Methods: Primary tumor and the most significant lymph node metastasis were manually segmented in baseline [F]FDG PET/CT of 52 newly diagnosed BC patients. Clinical parameters, NAC and conventional semiquantitative PET parameters were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!