Background: Balanced steady-state free precession (bSSFP) imaging is commonly used in cardiac cine MRI but prone to image artifacts. Ferumoxytol-enhanced (FE) gradient echo (GRE) has been proposed as an alternative. Utilizing the abundance of bSSFP images to develop a computationally efficient network that is applicable to FE GRE cine would benefit future network development.
Purpose: To develop a variable-splitting spatiotemporal network (VSNet) for image reconstruction, trained on bSSFP cine images and applicable to FE GRE cine images.
Study Type: Retrospective and prospective.
Subjects: 41 patients (26 female, 53 ± 19 y/o) for network training, 31 patients (19 female, 49 ± 17 y/o) and 5 healthy subjects (5 female, 30 ± 7 y/o) for testing.
Field Strength/sequence: 1.5T and 3T, bSSFP and GRE.
Assessment: VSNet was compared to VSNet with total variation loss, compressed sensing and low rank methods for 14× accelerated data. The GRAPPA×2/×3 images served as the reference. Peak signal-to-noise-ratio (PSNR), structural similarity index (SSIM), left ventricular (LV) and right ventricular (RV) end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) were measured. Qualitative image ranking and scoring were independently performed by three readers. Latent scores were calculated based on scores of each method relative to the reference.
Statistics: Linear mixed-effects regression, Tukey method, Fleiss' Kappa, Bland-Altman analysis, and Bayesian categorical cumulative probit model. A P-value <0.05 was considered statistically significant.
Results: VSNet achieved significantly higher PSNR (32.7 ± 0.2), SSIM (0.880 ± 0.004), rank (2.14 ± 0.06), and latent scores (-1.72 ± 0.22) compared to other methods (rank >2.90, latent score < -2.63). Fleiss' Kappa was 0.52 for scoring and 0.61 for ranking. VSNet showed no significantly different LV and RV ESV (P = 0.938) and EF (P = 0.143) measurements, but statistically significant different (2.62 mL) EDV measurements compared to the reference.
Conclusion: VSNet produced the highest image quality and the most accurate functional measurements for FE GRE cine images among the tested 14× accelerated reconstruction methods.
Level Of Evidence: 3 TECHNICAL EFFICACY: Stage 1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.29295 | DOI Listing |
Radiographics
January 2025
From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).
Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Magnetic Resonance Imaging, Radiology Imaging Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China (Z.D., Y.T., G.Y., X.M., S.Y., J.W., X.X., K.Y., M.L., X.C., S.Z.); Clinical and Technical Support, Philips Healthcare, Beijing, China (P.S.); and Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China (K.Z., Y.Z.).
Purpose To explore the diffusion characteristics of hypertrophic cardiomyopathy (HCM) using in vivo cardiac diffusion-tensor imaging (cDTI) and to determine whether cDTI could help identify abnormal myocardium beyond cardiac MRI findings of fibrosis and hypertrophy. Materials and Methods In this prospective study conducted from April to August 2023, participants with HCM and healthy volunteers were enrolled for cardiac MRI evaluation, including cine, late gadolinium enhancement (LGE), T1 mapping, and cDT imaging, using a 3.0-T scanner.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Radiology, Narayana Institute of Cardiac Sciences, Bangalore 560099, India (S.G., V.R.); and Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India (R.R.).
Cardiac MRI is the reference standard for identifying and evaluating myocardial pathologic conditions. Late gadolinium enhancement characteristics provide an excellent guide in classifying disease and triaging patients. Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is an uncommon congenital anomaly.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Smith Tower, Ste 1801, Houston, TX 77030 (M.M., P.B., V.C., M.S., M.R., S.F.N., W.A.Z., D.J.S.); and Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, Tex (D.T.N., E.A.G.).
Purpose To investigate the determinants and effect of right ventricular (RV) dysfunction in aortic regurgitation (AR) using cardiac MRI. Materials and Methods This study included patients with moderate or severe AR who were enrolled in the DEBAKEY-CMR registry between January 2009 and June 2020. Patients with previous valve intervention, cardiomyopathy deemed unrelated to AR, severe aortic stenosis, and other confounders were excluded.
View Article and Find Full Text PDFClin Cardiol
January 2025
Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Late gadolinium enhancement (LGE) has been found in patients with autoimmune rheumatic disease (ARD). However, the prognostic implications of some specific LGE patterns in ARD patients remain unclear.
Purpose: To investigate the prevalence and prognostic significance of left ventricular (LV) subendocardium-involved LGE (LGEse) in a cohort of ARD patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!