Bacterial biofilm growth and perturbation by serine protease from Bacillus sp.

Arch Microbiol

Structural And Applied Genomics Centre, Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000, Kajang, Selangor, Malaysia.

Published: March 2024

In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-03857-0DOI Listing

Publication Analysis

Top Keywords

bacterial biofilms
12
biofilm
9
serine protease
8
protease bacillus
8
effects bacterial
8
spb promoted
8
promoted growth
8
growth aeruginosa
8
aeruginosa biofilm
8
biofilms
7

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Biocontrol Potential of Endophytic LSR7 Against Rubber Red Root Rot Disease.

J Fungi (Basel)

December 2024

National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.

To obtain an effective bacterial biocontrol strain against the fungal pathogen , causing rubber tree red root rot disease, healthy rubber tree tissue from Baisha County, Hainan Province, was selected as the isolation source, and bacterial strains with strong antifungal effects against . were screened. The strain was identified by molecular biology, in vitro root segment tests, pot growth promotion tests, and genome detection.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Antimicrobial Responses to Bacterial Metabolic Activity and Biofilm Formation Studied Using Microbial Fuel Cell-Based Biosensors.

Biosensors (Basel)

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.

Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of in the biosensors were investigated and compared with the traditional biofilm detection method.

View Article and Find Full Text PDF

Anti-Biofilm Performance of Resin Nanopillars Inspired from Cicada Wing Surface for spp.

Biomimetics (Basel)

December 2024

Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan.

The increase in infections derived from biofilms from spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!