Development of surface-enhanced Raman scattering-sensing Method by combining novel Ag@Au core/shell nanoparticle-based SERS probe with hybridization chain reaction for high-sensitive detection of hepatitis C virus nucleic acid.

Anal Bioanal Chem

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.

Published: April 2024

The ultrasensitive detection of hepatitis C virus (HCV) nucleic acid is crucial for the early diagnosis of hepatitis C. In this study, by combining Ag@Au core/shell nanoparticle (Ag@AuNP)-based surface-enhanced Raman scattering (SERS) tag with hybridization chain reaction (HCR), a novel SERS-sensing method was developed for the ultrasensitive detection of HCV nucleic acid. This SERS-sensing system comprised two different SERS tags, which were constructed by modifying Ag@AuNP with a Raman reporter molecule of 4-ethynylbezaldehyde, two different hairpin-structured HCR sequences (H1 or H2), and a detection plate prepared by immobilizing a capture DNA sequence onto the Ag@AuNP layer surface of the detection wells. When the target nucleic acid was present, the two SERS tags were captured on the surface of the Ag@AuNP-coated detection well to generate many "hot spots" through HCR, forming a strong SERS signal and realizing the ultrasensitive detection of the target HCV nucleic acid. The limit of detection of the SERS-sensing method for HCV nucleic acid was 0.47 fM, and the linear range was from 1 to 10 fM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05219-7DOI Listing

Publication Analysis

Top Keywords

nucleic acid
24
hcv nucleic
16
ultrasensitive detection
12
surface-enhanced raman
8
ag@au core/shell
8
hybridization chain
8
chain reaction
8
detection
8
detection hepatitis
8
hepatitis virus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!