Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn and then promote the de-solvation of the solvated Zn owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards HO of the vertically-adsorbed Tris. Therefore, an improved Zn-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202403695 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical and Ocean Engineering, Mokpo National University, Muan-gun 58554, Jeollanam-do, Republic of Korea.
Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer.
View Article and Find Full Text PDFCells
January 2025
Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.
View Article and Find Full Text PDFCureus
December 2024
Cardiovascular Surgery, Ayase Heart Hospital, Tokyo, JPN.
Subvalvular aortic stenosis typically manifests at a young age and rarely presents in adulthood. It may cause left ventricular outflow tract stenosis, which requires surgical treatment in severe cases. The coexistence of discrete subvalvular aortic stenosis and quadricuspid aortic valve is a highly unusual finding.
View Article and Find Full Text PDFCureus
December 2024
Treatment Resistant Schizophrenia Outpatient Clinic, Júlio de Matos Hospital, São José Local Health Unit, Clinical Academic Center of Lisbon, Lisbon, PRT.
Primary central nervous system lymphoma (PCNSL) is a diffuse, large B-cell lymphoma affecting the brain, spinal cord, leptomeninges, or eyes. A patient with a recurrence of a previous PCNSL manifesting as an isolated vitreoretinal disease without central nervous system (CNS) involvement and a second cerebral recurrence without vitreoretinal involvement has not yet been reported. The patient is an 86-year-old man with PCNSL of the left cerebellum diagnosed at the age of 82 years and treated with suboccipital trepanation and resection of the lesion followed by chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!