The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.29498 | DOI Listing |
Wounds
December 2024
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.
Background: Caustic substances can inflict severe damage on tissues upon contact. Knowledge about skin damage caused by sodium hypochlorite is quite limited, with only a few reports available in the literature.
Case Report: A 79-year-old female with severe cognitive decline presented with multiple skin ulcerations that were covered by a blackish-greyish eschar and surrounded by a purple erythematous halo.
JCO Clin Cancer Inform
January 2025
Victorian Cancer Registry, Cancer Council Victoria, Victoria, Australia.
Purpose: Enhancing the speed and efficiency of clinical trial recruitment is a key objective across international health systems. This study aimed to use artificial intelligence (AI) applied in the Victorian Cancer Registry (VCR), a population-based cancer registry, to assess (1) if VCR received all relevant pathology reports for three clinical trials, (2) AI accuracy in auto-extracting information from pathology reports for recruitment, and (3) the number of participants approached for trial enrollment using the AI approach compared with standard hospital-based recruitment.
Methods: To verify pathology report accessibility for VCR trial enrollment, reports from the laboratory were cross-referenced.
Anal Chem
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.
Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Dana-Farber Cancer Institute, Boston, MA, United States.
Purpose: Melanoma brain metastases (MBMs) are a common, lethal complication of metastatic melanoma. Despite improvements in treatments, subsets of MBM patients experience rapid decline, and few prognostic biomarkers have been identified. An improved understanding of the molecular features specifically associated with MBM overall survival (OS) and intracranial progression free survival (PFS) could facilitate the development of more effective clinical management strategies.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!