Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19656 | DOI Listing |
Cell Biosci
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.
Results: This study uncovers three novel mutations (c.
Anticancer Res
January 2025
Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
Background/aim: Adult granulosa cell tumor (aGCT) is a rare and challenging ovarian tumor due to its unpredictable recurrence and its associated increased risk of breast and endometrial cancer. Identifying and describing molecular alterations in tumors has become common with the advent of high-throughput sequencing. However, DNA sequencing in rare tumors, such as aGCT, often lacks statistical power due to the limited number of cases in each study, thereby clinical implications of DNA alterations are difficult to interpretate.
View Article and Find Full Text PDFChembiochem
December 2024
University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.
RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody-GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!