Background Microbiome studies in humans, though limited, have facilitated the evaluation of the potential connection between the microbiome and brain function. Children with autism spectrum disorder (ASD) have several behavioral challenges and avoidant/restrictive food intake disorder, which may contribute to gut microbiome dysbiosis. Aim The aim of this study is to examine the extent to which the gut microbiome of children with ASD differs in comparison to children with neurotypical development (CWND) and to assess whether a probiotic intervention has the potential to influence the gut microbiome in mediating positive behavior change and stress regulation. Methods This pilot study collected data from three children with ASD and four CWND before and after a four-week probiotic intervention. Data collection included microbiome diversity screening from stool samples as well as the following biophysiological measures: salivary alpha-amylase (sAA) levels, response to simulated stressor and calming stimulus (behavior), including pulse rate, galvanic skin response, and pupil diameter (PD). In addition, telomere length was assessed. All measures, except for telomere length, were repeated after the four-week intervention on the ASD and CWND groups for pre-/post-comparison. Data analysis consisted of multivariate analyses, including ANOVA. Results While greater heterogeneity in the ASD group was evident in all measures, the gut microbiome of participants who received probiotic intervention differed from pretreatment results within and across the groups investigated. Further, the biophysiological parameter sAA displayed a significant increase between baseline and exposure to stress in both groups, whereas PD increased in both groups from baseline, (11, 26615) = 123.43, = 0.00. Conclusion Though gut microbiome diversity is diminished in children with ASD compared to CWND, the gap is narrowed following a brief probiotic intervention. The results suggest that probiotic interventions have the potential to rescue microbiome diversity and abundance, potentially supporting stress regulation in pediatric populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905207 | PMC |
http://dx.doi.org/10.7759/cureus.53305 | DOI Listing |
ACS Sens
January 2025
Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls.
View Article and Find Full Text PDFMinerva Gastroenterol (Torino)
January 2025
Department of Respiratory, Zhejiang Hospital, Hangzhou, China -
mSphere
January 2025
Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFGut Microbes
December 2025
APC Microbiome Ireland, University College Cork, Cork, Ireland.
is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!