AI Article Synopsis

  • Postinjury peripheral nerve regeneration is currently ineffective, and using transplanted Schwann cells (SCs) for nerve repair faces challenges like limited SC sources and low retention rates.
  • This study found that aggregating SCs into three-dimensional spheroids promotes their repair capabilities and improves the healing process in rats with sciatic nerve injuries.
  • The research suggests that using SC spheroids can enhance nerve structure restoration and motor function recovery, indicating a promising approach for better nerve regeneration therapies.

Article Abstract

The prognosis for postinjury peripheral nerve regeneration remains suboptimal. Although transplantation of exogenous Schwann cells (SCs) has been considered a promising treatment to promote nerve repair, this strategy has been hampered in practice by the limited availability of SC sources and an insufficient postengraftment cell retention rate. In this study, to address these challenges, SCs were aggregated into spheroids before being delivered to an injured rat sciatic nerve. We found that the three-dimensional aggregation of SCs induced their acquisition of a repair phenotype, as indicated by enhanced levels of c-Jun expression/activation and decreased expression of myelin sheath protein. Furthermore, our in vitro results demonstrated the superior potential of the SC spheroid-derived secretome in promoting neurite outgrowth of dorsal root ganglion neurons, enhancing the proliferation and migration of endogenous SCs, and recruiting macrophages. Moreover, transplantation of SC spheroids into rats after sciatic nerve transection effectively increased the postinjury nerve structure restoration and motor functional recovery rates, demonstrating the therapeutic potential of SC spheroids. In summary, transplantation of preassembled SC spheroids may hold great potential for enhancing the cell delivery efficiency and the resultant therapeutic outcome, thereby improving SC-based transplantation approaches for promoting peripheral nerve regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905550PMC
http://dx.doi.org/10.1002/btm2.10635DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
schwann cells
8
repair phenotype
8
therapeutic potential
8
promoting peripheral
8
nerve repair
8
nerve regeneration
8
sciatic nerve
8
nerve
7
spheroids
5

Similar Publications

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Correlation Between Relative Value Units and Operative Time for Peripheral Nerve Surgeries.

Hand (N Y)

January 2025

Division of Plastic and Reconstructive Surgery, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, FL, USA.

Background: The work relative value unit (wRVU) system quantifies surgeons' effort and resources for procedures. Studies have shown its inaccuracy in capturing the complexity of certain plastic and upper extremity surgeries. Analysis for peripheral nerve surgery (PNS), a growing niche within hand and plastic surgery, has not been performed.

View Article and Find Full Text PDF

After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!