Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902849PMC
http://dx.doi.org/10.1021/acsaelm.3c01175DOI Listing

Publication Analysis

Top Keywords

aerosol jet
8
jet printing
8
patterned graphene
8
thin film
8
nickel
5
formulation aerosol
4
printing nickel
4
nickel nanoparticle
4
nanoparticle ink
4
ink high-temperature
4

Similar Publications

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

An improved endwall-injection technique for examining high-temperature ignition of lubricating oils in shock tubes.

Rev Sci Instrum

January 2025

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.

Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.

View Article and Find Full Text PDF

Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.

Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.

View Article and Find Full Text PDF

Development of a Wearable Electromyographic Sensor with Aerosol Jet Printing Technology.

Bioengineering (Basel)

December 2024

Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

Electromyographic (EMG) sensors are essential tools for analyzing muscle activity, but traditional designs often face challenges such as motion artifacts, signal variability, and limited wearability. This study introduces a novel EMG sensor fabricated using Aerosol Jet Printing (AJP) technology that addresses these limitations with a focus on precision, flexibility, and stability. The innovative sensor design minimizes air interposition at the skin-electrode interface, thereby reducing variability and improving signal quality.

View Article and Find Full Text PDF

Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!