Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A simple theory has been developed to explain quantitatively the multiple crystal growth rate minima observed experimentally in polyethylene brassylates (PEBs), polymers with regularly spaced "chemical defects", in this case, diester groups separated by 11 methylenes. The minima occur at the transitions where the fold length drops from 4 to 3 repeat units and from 3 to 2 units. An analytical rate-equation model was developed with elementary attachment and detachment steps of individual monomer repeat units, also including postattachment stem lengthening (stem conversion). The model produced a good fit to experimental crystallization rate curves for PEBs of three different molecular weights. The fits confirm in a quantitative way that the anomalies are caused by the self-poisoning effect, as proposed in the original experimental report on PEBs, based on the ideas developed in previous studies on long-chain -alkanes. It is concluded that the rate minima in PEBs are the result of temporary attachment to the growth surface of stems that are too short to be stable yet long enough and close to stability to obstruct productive growth by stems of sufficient length. The results confirm the ubiquitous presence of self-poisoning at the growth front of polymer crystals in general and will help to achieve a better understanding of the complex process of crystallization of polymers. It will also allow the determination of more realistic parameters controlling their lamellar growth kinetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902838 | PMC |
http://dx.doi.org/10.1021/acs.macromol.3c02432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!