A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNN-BiLSTM-CRF based amalgamated deep learning model for electricity theft detection to secure smart grids. | LitMetric

RNN-BiLSTM-CRF based amalgamated deep learning model for electricity theft detection to secure smart grids.

PeerJ Comput Sci

Department of Computer Engineering, College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia.

Published: February 2024

Electricity theft presents a substantial threat to distributed power networks, leading to non-technical losses (NTLs) that can significantly disrupt grid functionality. As power grids supply centralized electricity to connected consumers, any unauthorized consumption can harm the grids and jeopardize overall power supply quality. Detecting such fraudulent behavior becomes challenging when dealing with extensive data volumes. Smart grids provide a solution by enabling two-way electricity flow, thereby facilitating the detection, analysis, and implementation of new measures to address data flow issues. The key objective is to provide a deep learning-based amalgamated model to detect electricity theft and secure the smart grid. This research introduces an innovative approach to overcome the limitations of current electricity theft detection systems, which predominantly rely on analyzing one-dimensional (1-D) electric data. These approaches often exhibit insufficient accuracy when identifying instances of theft. To address this challenge, the article proposes an ensemble model known as the RNN-BiLSTM-CRF model. This model amalgamates the strengths of recurrent neural network (RNN) and bidirectional long short-term memory (BiLSTM) architectures. Notably, the proposed model harnesses both one-dimensional (1-D) and two-dimensional (2-D) electricity consumption data, thereby enhancing the effectiveness of the theft detection process. The experimental results showcase an impressive accuracy rate of 93.05% in detecting electricity theft, surpassing the performance of existing models in this domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909240PMC
http://dx.doi.org/10.7717/peerj-cs.1872DOI Listing

Publication Analysis

Top Keywords

electricity theft
20
theft detection
12
electricity
8
secure smart
8
smart grids
8
one-dimensional 1-d
8
theft
7
model
6
rnn-bilstm-crf based
4
based amalgamated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!