A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the enzymatic degradation of DNA expedited by typical perfluoroalkyl acids. | LitMetric

Perfluoroalkyl acids (PFAAs) are considered forever chemicals, gaining increasing attention for their hazardous impacts. However, the ecological effects of PFAAs remain unclear. Environmental DNA (eDNA), as the environmental gene pool, is often collected for evaluating the ecotoxicological effects of pollutants. In this study, we found that all PFAAs investigated, including perfluorohexanoic acid, perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctane sulfonate, even at low concentrations (0.02 and 0.05 mg/L), expedited the enzymatic degradation of DNA in a nonlinear dose-effect relationship, with DNA degradation fragment sizes being lower than 1,000 bp and 200 bp after 15 and 30 min of degradation, respectively. This phenomenon was attributed to the binding interaction between PFAAs and AT bases in DNA via groove binding. van der Waals force (especially dispersion force) and hydrogen bonding are the main binding forces. DNA binding with PFAAs led to decreased base stacking and right-handed helicity, resulting in loose DNA structure exposing more digestion sites for degrading enzymes, and accelerating the enzymatic degradation of DNA. The global ecological risk evaluation results indicated that PFAA contamination could cause medium and high molecular ecological risk in 497 samples from 11 contamination-hot countries (such as the USA, Canada, and China). The findings of this study show new insights into the influence of PFAAs on the environmental fates of biomacromolecules and reveal the hidden molecular ecological effects of PFAAs in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902504PMC
http://dx.doi.org/10.1016/j.eehl.2023.09.002DOI Listing

Publication Analysis

Top Keywords

enzymatic degradation
12
degradation dna
12
dna
8
perfluoroalkyl acids
8
ecological effects
8
effects pfaas
8
ecological risk
8
molecular ecological
8
pfaas
7
degradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!