Platinum-nickel (Pt-Ni) nanowires were developed as hydrogen evolving catalysts for anion exchange membrane electrolyzers. Following synthesis by galvanic displacement, the nanowires had Pt surface areas of 90 m g. The nanowire specific exchange current densities were 2-3 times greater than commercial nanoparticles and may benefit from the extended nanostructure morphology that avoids fringe facets and produces higher quantities of Pt{100}. Hydrogen annealing was used to alloy Pt and Ni zones and compress the Pt lattice. Following annealing, the nanowire activity improved to 4 times greater than the as-synthesized wires and 10 times greater than Pt nanoparticles. Density functional theory calculations were performed to investigate the influence of lattice compression and exposed facet on the water-splitting reaction; it was found that at a lattice of 3.77 Å, the (100) facet of a Pt-skin grown on NiPt weakens hydrogen binding and lowers the barrier to water-splitting as compared to pure Pt(100). Moreover, the activation energy of water-splitting on the (100) facet of a Pt-skin grown on NiPt is particularly advantageous at 0.66 eV as compared to the considerably higher 0.90 eV required on (111) surfaces of pure Pt or Pt-skin grown on NiPt. This favorable effect may be slightly mitigated during further optimization procedures such as acid leaching near-surface Ni, necessary to incorporate the nanowires into electrolyzer membrane electrode assemblies. Exposure to acid resulted in slight dealloying and Pt lattice expansion, which reduced half-cell activity, but exposed Pt surfaces and improved single-cell performance. Membrane electrode assembly performance was kinetically 1-2 orders of magnitude greater than Ni and slightly better than Pt nanoparticles while at one tenth the Pt loading. These electrocatalysts potentially exploit the highly active {100} facets and provide an ultralow Pt group metal option that can enable anion exchange membrane electrolysis, bridging the gap to proton exchange membrane-based systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906943 | PMC |
http://dx.doi.org/10.1021/acscatal.0c01568 | DOI Listing |
J Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Chemistry, UNITED STATES OF AMERICA.
The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: In Alzheimer's disease (AD), the spread of Tau proteopathic seeds across the cerebral cortex parallels the disease progression. Previously, it was shown that isolating high-molecular-weight (HMW) Tau species via size exclusion chromatography (SEC) from human brain lysate of AD patients resulted in the enrichment of Tau aggregation-prone species. However, whether the HMW Tau population contain a homogenous or heterogeneous mixture of Tau species is still unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!