Background/aim: The tumor protein 53 (TP53) tumor suppressor protein (17p13.1) acts as a significant regulator for the cell cycle normal function. The gene is frequently mutated in colorectal adenocarcinoma (CRC) patients and is associated to poor prognosis and low response rates to chemo-targeted therapy. Our purpose was to correlate TP53 expression with Mouse Double Minute 2 Homolog (MDM2), a proto-oncogene (12q14.3) and a major negative regulator in the TP53-MDM2 auto-regulatory pathway.

Materials And Methods: A total of forty (n=40) colorectal adenocarcinoma (CRC) cases were included in this study. An immunohistochemistry-based assay was implemented by using anti-TP53 and anti-MDM2 antibodies in the corresponding tissue sections. Additionally, a digital image analysis assay was implemented for objectively measuring TP53/MDM2 immunostaining intensity levels.

Results: TP53 protein overexpression was detected in 27/40 (67.5%), whereas MDM2 overexpression in 28/40 (70%) cases. Interestingly, in 21/40 (52.5%) cases, a combined TP53/MDM2 co-expression was detected, whereas in 6/40 (15%), a combined loss of expression was identified (overall co-expression: p=0.119). p53 overexpression was significantly correlated to grade of the examined cases (p=0.001), whereas MDM2 to stage and max diameter of the malignancies (p=0.001 and 0.024, respectively).

Conclusion: TP53/MDM2 over expression is a frequent and significant genetic event in CRCs associated with an aggressive biological behavior, as a result of increased dedifferentiation grade and advanced stage/elevated tumor volume, respectively. MDM2 oncogene overactivation combined with mutated and overexpressed TP53 is observed in sub-groups of patients leading to specific gene/protein signatures - targets for personalized chemotherapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905287PMC
http://dx.doi.org/10.21873/cdp.10298DOI Listing

Publication Analysis

Top Keywords

colorectal adenocarcinoma
12
tumor suppressor
8
adenocarcinoma crc
8
assay implemented
8
comparative expression
4
expression analysis
4
tumor
4
analysis tumor
4
suppressor oncogene
4
oncogene colorectal
4

Similar Publications

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Protein abundance of drug transporters and drug-metabolizing enzymes in paired healthy and tumor tissue from colorectal cancer patients.

Int J Pharm

January 2025

Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:

The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a malignant gynecological cancer with an extremely poor prognosis. Stress granules (SGs) are non-membrane organelles that respond to stressors; however, the correlation between SG-related genes and the prognosis of OC remains unclear. This systematic analysis aimed to determine the expression levels of SG-related genes between high- and low-risk groups of patients with OC and to explore the prognostic value of these genes.

View Article and Find Full Text PDF

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!