Improving Fine Particle Removal Using a Single-Channel Slit Bubbling Device in Wet Flue Gas Desulfurization System.

ACS Omega

State Key Laboratory of Coal Combustion (SKLCC), School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Published: February 2024

To improve the cleanliness of coal-fired power plants' particulate matter emissions, a novel device (single-channel slit bubbling particle removal device (SCSB-PRD)) is proposed to improve the wet flue gas desulfurization system's (WFGDs) collaborative particle removal effect. Actual coal-fired flue gas was used to test the particle removal performance. The results showed that the flue gas temperature had no obvious effect on the scrubbing effect of the SCSB-PRD. The scrubbing space, scrubbing liquid volume, and flue gas flow rate effectively changed the gas-liquid flow state, and the bubbling state was the key factor in particle removal. The jet-bubbling contact state was more conducive to removing particles than the foam bubbling state. The jet-bubbling state improved the removal efficiency of fine particles by approximately 30% compared to the foam bubbling state. The device operated in a single stage, and the removal performance of the particulate matter reached more than 60%. Even the submicron particles had a satisfactory removal performance of greater than 50%. The particulate matter concentration at the outlet of the WFGDs was reduced to less than 10 mg/m, which provides a feasible transformation path for ultraultra-low emissions of particulate matter from coal-fired power plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905572PMC
http://dx.doi.org/10.1021/acsomega.3c08250DOI Listing

Publication Analysis

Top Keywords

particle removal
20
flue gas
20
particulate matter
16
removal performance
12
bubbling state
12
removal
8
single-channel slit
8
slit bubbling
8
wet flue
8
gas desulfurization
8

Similar Publications

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!