High-performance natural materials with superior mechanical properties often possess a hierarchical structure across multiple length scales. Nacre, also known as the mother of pearl, is an example of such a material and exhibits remarkable strength and toughness. The layered hierarchical architecture across different length scales is responsible for the efficient toughness and energy dissipation. To develop high-performance artificial nacre-like composites, it is necessary to mimic this layered structure and understand the molecular phenomena at the interface. This study uses coarse-grained molecular dynamics simulations to investigate the structure-property relationship of stacked graphene-polyethylene (PE) nanocomposites. Uniaxial and oscillatory shear deformation simulations were conducted to explore the composites' mechanical and viscoelastic behavior. The effect of grafting on the glass-transition temperature and the mechanical and viscoelastic behavior was also examined. The two examined microstructures, the stacked and grafted GnP (graphene nanoplatelet)-PE composites, demonstrated significant enhancement in the Young's modulus and yield strength when compared to the pristine PE. The study also delves into the viscoelastic properties of polyethylene nanocomposites containing graphene and graphene oxide. The grafted composite demonstrated an increased elastic energy and improved capacity for stress transfer. Our study sheds light on the energy dissipation properties of layered nanocomposites through underlying molecular mechanisms, providing promising prospects for designing novel biomimetic polymer nanocomposites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906040 | PMC |
http://dx.doi.org/10.1021/acsomega.3c07690 | DOI Listing |
PLoS Comput Biol
January 2025
IRSD-Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Geophysics of the Czech Academy of Sciences, Prague, Czechia.
Volcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFQuant Plant Biol
December 2024
Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, Japan.
Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis () zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA.
Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!