A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recyclable Curcumin-Based Bioepoxy Resin with On-Demand Chemical Cleavability. | LitMetric

Recyclable Curcumin-Based Bioepoxy Resin with On-Demand Chemical Cleavability.

ACS Omega

Department of Chemical Engineering, Konkuk University, Gwangjin, Seoul 05029, Republic of Korea.

Published: February 2024

We synthesized a novel curcumin-based bioepoxy resin by introducing epichlorohydrin (ECH) into the hydroxyl groups of curcumin and analyzed it using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The epoxy equivalent weight (EEW) was determined based on a reaction with sodium hydroxide (NaOH) through titration, and the actual curing process was conducted after exploring the optimal conditions using an amine-based curing agent through dynamic scanning in differential scanning calorimetry (DSC) and isotherm analysis. The cured epoxy resin had a tensile strength, Young's modulus, and glass transition temperature () of 33 MPa, 1.4 GPa, and 86 °C, respectively. Interestingly, the diunsaturated ketone contained in the epoxy resin showed on-demand chemical cleavability, in that it had been decomposed into an aldehyde and ketone only after having been converted to a hydroxyl ketone through an oxidation reaction. The results of this study can significantly contribute to improving the eco-friendliness and recyclability of epoxy resins used in fields requiring long-term stability and chemical resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905686PMC
http://dx.doi.org/10.1021/acsomega.3c09464DOI Listing

Publication Analysis

Top Keywords

curcumin-based bioepoxy
8
bioepoxy resin
8
resin on-demand
8
on-demand chemical
8
chemical cleavability
8
epoxy resin
8
recyclable curcumin-based
4
resin
4
cleavability synthesized
4
synthesized novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!