A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model links the concentration-time profile of a drug with its therapeutic effects based on the underlying biological or physiological processes. Clinical endpoints play a pivotal role in drug development. Despite the substantial time and effort invested in screening drugs for favourable pharmacokinetic (PK) properties, they may not consistently yield optimal clinical outcomes. Furthermore, in the virtual compound screening phase, researchers cannot observe clinical outcomes in humans directly. These uncertainties prolong the process of drug development. As incorporation of Artificial Intelligence (AI) into the physiologically based pharmacokinetic/pharmacodynamic (PBPK) model can assist in forecasting pharmacodynamic (PD) effects within the human body, we introduce a methodology for utilizing the AI-PBPK platform to predict the PK and PD outcomes of target compounds in the early drug discovery stage. In this integrated platform, machine learning is used to predict the parameters for the model, and the mechanism-based PD model is used to predict the PD outcome through the PK results. This platform enables researchers to align the PK profile of a drug with desired PD effects at the early drug discovery stage. Case studies are presented to assess and compare five potassium-competitive acid blocker (P-CAB) compounds, after calibration and verification using vonoprazan and revaprazan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904617 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1330855 | DOI Listing |
N Engl J Med
January 2025
From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston (C.T.R., S.M.P., R.P.G., D.A.M., J.F.K., E.L.G., S.A.M., S.D.W., M.S.S.); Anthos Therapeutics, Cambridge, MA (B.H., S.P., D.B.); the Heart Rhythm Center, Taipei Veterans General Hospital and Cardiovascular Center, Taipei, Taiwan (S.-A.C.); Taichung Veterans Hospital, Taichung, Taiwan (S.-A.C.); National Yang Ming Chiao Tung University, Hsinchu, Taiwan (S.-A.C.); National Chung Hsing University, Taichung, Taiwan (S.-A.C.); St. Michael's Hospital, Unity Health Toronto, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto (S.G.G.); Canadian VIGOUR Centre, University of Alberta, Edmonton, Canada (S.G.G.); the Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea (B.J.); the Department of Cardiology, Central Hospital of Northern Pest-Military Hospital, Budapest, Hungary (R.G.K.); the Heart and Vascular Center, Semmelweis University, Budapest, Hungary (R.G.K.); the Internal Cardiology Department, St. Ann University Hospital and Masaryk University, Brno, Czech Republic (J.S.); the Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland (W.W.); the Departments of Medicine and of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada (J.W.); and the Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada (J.W.).
Background: Abelacimab is a fully human monoclonal antibody that binds to the inactive form of factor XI and blocks its activation. The safety of abelacimab as compared with a direct oral anticoagulant in patients with atrial fibrillation is unknown.
Methods: Patients with atrial fibrillation and a moderate-to-high risk of stroke were randomly assigned, in a 1:1:1 ratio, to receive subcutaneous injection of abelacimab (150 mg or 90 mg once monthly) administered in a blinded fashion or oral rivaroxaban (20 mg once daily) administered in an open-label fashion.
Acc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFS D Med
December 2024
Department of Internal Medicine, University of South Dakota Sanford School of Medicine.
Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
Background: Update, the link between HIV infection and abnormal glucose metabolism (AGM) is still unclear. This study aims to investigate the impact of HIV infection on AGM, including insulin resistance (IR), impaired fasting glucose (IFG), and diabetes mellitus (DM).
Methods: A multicenter case-control study was conducted in Zhejiang province, China.
Curr Cardiol Rep
January 2025
The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.
Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.
Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!