Recurrent Aphthous Stomatitis (RAS) is a common ulcerative disease of the oral mucosa which is characterized by pain, and recurrent lesions in the oral cavity. This condition is quite painful, causing difficulty in eating, speaking and swallowing. Topical medications have been used for this condition, but the obstacle in using topical medications is the difficulty of achieving drug effects due to saliva wash out. This problem can be overcome by film hydrogel formulation which can protect the ulcer and reduce the pain to some extent. α-mangostin is a xanthone isolated from the rind of the mangosteen fruit. One of the activities of α-mangostin is anti-inflammatory effects, which operate through the characteristic mechanism of inhibiting the inflammatory response. This protocol study aims to investigate the efficacy of an α-mangostin hydrogel film with a chitosan alginate base for recurrent aphthous stomatitis (RAS) in comparison with a placebo over a period of 7 days. This is a two-arm, double blinding, randomized controlled trial enrolling patients with RAS. The efficacy test of α-mangostin Hydrogel Film will be tested against the placebo. Patients with RAS will be allocated randomly into the two arms and the hydrogel film will be administered for 7 days. The diameter of ulcer and visual analog scale (VAS) score will be used as the primary efficacy endpoint. The outcome measure will be compared between the two arms at the baseline, day 3, day 5, and at the end of 7 days. The purpose of this clinical research is to provide scientific evidence on the efficacy of α-mangostin hydrogel film with a chitosan alginate basis in treating recurrent aphthous stomatitis. The trial is expected to improve our capacity to scientifically confirm the anti-inflammatory effectiveness of α-mangostin compounds in a final formulation that is ready to use. NCT06039774 (14 September 2023).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904614 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1353503 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia. Electronic address:
Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
Flexible electronic patches have been widely studied in various fields. However, they still face serious challenges in cardio-brain signaling monitoring to achieve accurate adhesion and detection with compatibility in mildly humid environments. To tackle these challenges, we engineered a gelatin hydrogel film cross-linked with a biocompatible matrix factor and combined it with a blend of liquid metal and PVP to create the flexible electronic patch.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFA new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.
View Article and Find Full Text PDFChembiochem
December 2024
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!