Metastasis occurs when cancer cells leave the primary tumour and travel to a secondary site to form a new lesion. The tumour microenvironment (TME) is recognised to greatly influence this process, with for instance the vascular system enabling the dissemination of the cells into other tissues. However, understanding the exact role of these microenvironmental cells during metastasis has proven challenging. Indeed, models often appear too simplistic, and the study of the interactions between different cell types in a 3D space is limited. On the other hand, even though models incorporate the TME, observing cells in real-time to understand their exact role is difficult. Horizontal compartmentalised microfluidic models are a promising new platform for metastasis studies. These devices, composed of adjacent microchannels, can incorporate multiple cell types within a 3D space. Furthermore, the transparency and thickness of these models also enables high quality real-time imaging to be performed. This paper demonstrates how these devices can be successfully used for oral squamous cell carcinoma (OSCC) metastasis studies, focusing on the role of the vascular system in this process. Conditions for co-culture of OSCC cells and endothelial cells have been determined and staining protocols optimised. Furthermore, several imaging analysis techniques for these models are described, enabling precise segmentation of the different cell types on the images as well as accurate assessment of their phenotype. These methods can be applied to any study aiming to understand the role of microenvironmental cell types in cancer metastatic dissemination, and overcome several challenges encountered with current and models. Hence, this new model capable of recapitulating important aspects of the cellular complexity of human metastatic dissemination can ultimately contribute to replacing animal studies in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904955 | PMC |
http://dx.doi.org/10.12688/f1000research.131810.2 | DOI Listing |
Immun Inflamm Dis
January 2025
Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:
The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan. Electronic address:
Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:
Understanding metabolic conditions related to glycolysis dependence is crucial for developing new treatments in cancer and regenerative medicine. This protocol details a method for using the live-cell metabolic analyzer (LiCellMo) to measure continuous changes in glucose consumption and lactate production in cultured human cells. LiCellMo provides real-time data on consecutive metabolic changes, improving measurements of these processes in various contexts, including in cancer and regenerative treatments.
View Article and Find Full Text PDFSTAR Protoc
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:
Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!