This article presents a new design of a compact fractal antenna that operates across various wireless communication applications with wideband functionality. With a peak gain of 6.8 dB and a radiation efficiency ranging from 91% to 94%, the designed antenna operates in the frequency range of 3.2-7.5 GHz. The antenna consists of a rectangular radiator with integrated rectangular slots on one side of an FR4 substrate, while a partial ground plane is etched on the other side. The fabricated prototype was tested and measured. The results present a good agreement with the simulated results. The results presented by this antenna demonstrate high competitiveness for wireless communication applications such as Wi-Fi and WLAN and presents a promising solution to meet the increasing demand for compact and high-performance wireless communication devices. Additionally, the antenna has a small size of only 34 × 30 × 1.6 mm, making it suitable for applications where space is limited. Overall, this paper provides an innovative and efficient design that offers excellent performance and is suitable for various wireless communication applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906324 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26087 | DOI Listing |
Rev Sci Instrum
January 2025
National Institute of Metrology, Beijing 100029, China.
Radiation from wireless communication devices inside intelligent connected vehicles has been an expeditious growth of concern regarding possible adverse effects on human health. Due to the significant differences in the working scenarios compared to traditional mobile products, the traditional measuring systems of specific absorption rate (SAR) are not applicable to in-vehicle scenarios. This paper has developed a SAR measurement system and a SAR measurement method, which are suitable for in-vehicle scenarios.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.
As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.
View Article and Find Full Text PDFACS Sens
January 2025
Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China.
Flexible pressure sensors have shown significant application prospects in fields such as artificial intelligence and precision manufacturing. However, most flexible pressure sensors are often prepared using polymer materials and precise micronano processing techniques, which greatly limits the widespread application of sensors. Here, this work chooses textile material as the construction material for the sensor, and its latitude and longitude structure endows the sensor with a natural structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!