The structural, morphological, mechanical, and electronic properties of nickel-substituted manganese oxide (NiMnO, where x = 0.0, 0.2, and 0.4) were studied using experimental techniques. The compounds were synthesized using a hydrothermal method. The face-centered cubic structures of the examined compounds were confirmed by XRD. Scanning electron microscopy (SEM) images revealed that the particles were well-shaped, while elemental mapping with energy dispersive spectroscopy (EDS) confirmed that the examined compounds had the appropriate proportions of Ni, Mn, and O. The FT-IR spectroscopy results indicated the respective functional groups. Raman spectroscopy results disclosed the vibration modes of the respective materials. The Tauc plot reveals the semiconducting nature of the compounds. The UV-Vis bandgap study revealed the semiconductor natures of compounds. This demonstrates that these nanoparticles can be used in atom lasers, photovoltaics, and other electronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907671PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26708DOI Listing

Publication Analysis

Top Keywords

structural morphological
8
morphological mechanical
8
mechanical electronic
8
electronic properties
8
manganese oxide
8
oxide nimno
8
electronic applications
8
examined compounds
8
compounds
5
electronic
4

Similar Publications

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

While investigating the potential for species to hybridize in the mixed populations of Point Sal and Burton Mesa in Santa Barbara County, California, we discovered that from the Nipomo Mesa (San Luis Obispo County), formerly considered a northern population of , are genetically and morphologically distinct. We name this new taxon after the ytt (Northern Chumash language) word for the Nipomo Mesa region. For morphological and molecular analyses, we sampled 54 plants, focusing on , , and from multiple species and comparative single species populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!