Electrochemical wastewater treatment is a promising technique to remove recalcitrant pollutants from wastewater. However, the complexity of elucidating the underlying degradation mechanisms hinders its optimisation not only from a techno-economic perspective, as it is desirable to maximise removal efficiencies at low energy and chemical requirements, but also in environmental terms, as the generation of toxic by-products is an ongoing challenge. In this work, we propose a novel combined experimental and computational approach to (i) estimate the contribution of radical and non-radical mechanisms as well as their synergistic effects during electrochemical oxidation and (ii) identify the optimal conditions that promote specific degradation pathways. As a case study, the distribution of the degradation mechanisms involved in the removal of benzoic acid (BA) boron-doped diamond (BDD) anodes was elucidated and analysed as a function of several operating parameters, , the initial sulfate and nitrate content of the wastewater and the current applied. Subsequently, a multivariate optimisation study was conducted, where the influence of the electrode nature was investigated for two commercial BDD electrodes and a customised silver-decorated BDD electrode. Optimal conditions were identified for each degradation mechanism as well as for the overall BA degradation rate constant. BDD selection was found to be the most influential factor favouring any mechanism (, 52-85% contribution), given that properties such as its boron doping and the presence of electrodeposited silver could dramatically affect the reactions taking place. In particular, decorating the BDD surface with silver microparticles significantly enhanced BA degradation sulfate radicals, whereas direct oxidation, reactive oxygen species and radical synergistic effects were promoted when using a commercial BDD material with higher boron content and on a silicon substrate. Consequently, by simplifying the identification and quantification of underlying mechanisms, our approach facilitates the elucidation of the most suitable degradation route for a given electrochemical wastewater treatment together with its optimal operating conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905665 | PMC |
http://dx.doi.org/10.1039/d3ew00784g | DOI Listing |
Endocrinol Diabetes Metab
January 2025
Department of Endocrinology and Metabolism, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFJ Mol Model
January 2025
Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China.
Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Faculty of Medicine, Department of Gastroenterology, Mersin University, Mersin, Turkey.
Background: Chemokines and their receptors, which regulate lymphoid organ development and immune cell trafficking, are integral to the mechanisms underlying viral control, hepatic inflammation, and liver damage in chronic hepatitis C (CHC) infection. This study explores the potential relationship between serum chemokine levels/polymorphisms and hepatitis C infection in affected individuals, with a particular focus on their utility as biomarkers across different stages of fibrosis.
Methods And Results: Serum levels of the chemokines CXCL11, CXCL12, and CXCL16 were measured in patients with mild/moderate and advanced fibrosis due to CHC, as well as in healthy controls, using the ELISA method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!