Breast cancer treatment options are diverse, with tamoxifen commonly used as a selective estrogen receptor modulator (SERM) for hormone receptor-positive breast cancer. However, tamoxifen can have adverse systemic effects. Local transdermal therapy offers a potential solution by delivering the drug directly to the breast and minimizing systemic exposure. Hesperidin, a flavonoid, exerts synergistic effects when combined with anticancer agents. This combination therapy may be a more effective approach to breast cancer management. Analytical methods have been developed to quantify 4-Hydroxytamoxifen (4-HT) and hesperidin separately; however, no method currently exists for their simultaneous quantification in pharmaceutical formulations. This study aimed to develop and validate a reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous quantification of 4-HT and hesperidin in liposomal formulations. A Design of Experiments (DoE) approach was employed using a Box-Behnken design (BBD) to optimize the RP-HPLC method. BBD allowed for a reduction in the number of required tests by creating a statistical model to estimate the significance of various factors and interactions. The methanol concentration, flow rate, and injection volume were considered as independent variables for optimization. A mobile phase (90:10 ratio of methanol: 0.1% v/v orthophosphoric acid) with a flow rate of 0.4 mL/min, and an injection volume of 10 μL was selected as optimized chromatographic condition. 4-HT showed a retention time (Rt) of 5.05 min and hesperidin showed an Rt of 7.11 min using an optimized analytical method and was detected at 275 nm. The developed RP-HPLC method was validated according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines, confirming its accuracy, precision, linearity, selectivity, and robustness. The validated method was then successfully applied to determine the entrapment efficiency and permeation of 4-HT and hesperidin into loaded liposomes. This study fills a gap in the literature by providing a simple and reliable RP-HPLC method for the simultaneous quantification of 4-HT and hesperidin in liposomal formulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906183 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25598 | DOI Listing |
Plants (Basel)
January 2025
Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece.
The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.
View Article and Find Full Text PDFAnal Methods
January 2025
Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India.
This work deals with the development of a greener RP-HPLC method and chemical pattern recognition for the identification of L. collected from different natural sources and samples traded as '' in Indian herbal drug markets. The simultaneous quantification of α- and β-asarone was performed using 0.
View Article and Find Full Text PDFGels
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand.
Yataprasen (YTPS) remedy ethanolic spray, one of the National Thai Traditional Medicine Formulary, is extensively employed in Thai traditional healthcare to manage musculoskeletal pain and inflammation. Despite its widespread use, the quality and stability of the YTPS formulation, critical to its efficacy, safety, and patient adherence, have not been comprehensively studied. This research developed and optimized a film-forming spray (FFS) formulation of YTPS ethanolic extract and conducted a 6-month stability evaluation.
View Article and Find Full Text PDFPharm Res
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Purposes: In the peptide mapping reduction process for monoclonal antibodies (mAbs) and other proteins, the conventional reducing reagents β-mercaptoethanol (β-ME) and dithiothreitol (DTT) pose challenges due to their strong odor and toxicity at high concentrations. Cysteine (Cys), an essential amino acid for new protein synthesis, is an overlooked, nontoxic, and odorless reducing agent. This study presents a novel peptide mapping method using Cys as the reducing agent.
View Article and Find Full Text PDFActa Med Philipp
December 2024
Institute of Herbal Medicine, National Institutes of Health, University of the Philippines Manila.
Objectives: The aim of this study is to establish a Reversed Phase - High Performance Liquid Chromatographic (RP-HPLC) method for the quantification of Rhein from L. leaves.
Methods: A Shimadzu system equipped with a C18 Column (150 x 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!