Objective: This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism.
Methods: The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA.
Results: MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues.
Conclusions: The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906439 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26700 | DOI Listing |
Heliyon
February 2024
Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Front Cardiovasc Med
January 2022
Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) represent an attractive resource for cardiac regeneration. However, survival and functional integration of transplanted iPS-CM is poor and remains a major challenge for the development of effective therapies. We hypothesized that paracrine effects of co-transplanted mesenchymal stromal cells (MSCs) augment the retention and therapeutic efficacy of iPS-CM in a mouse model of myocardial infarction (MI).
View Article and Find Full Text PDFStem Cell Res Ther
July 2020
Bioisland Laboratory, Biomedical Equipment Department, Building 3, No.188 KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China.
Background: Cellular replacement strategies using human induced pluripotent stem cells (iPSCs) and their cardiac derivatives are emerging as novel treatments for post-myocardial infarction (MI) heart failure (HF); however, the mechanism of recovery of heart function is not very clear. The purpose of this study was to investigate the efficiency of using highly purified human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) for myocardial repair in a mouse model of MI and to clarify the mechanism of recovery of heart function.
Methods: Animals modelling MI were randomly assigned to receive direct intramyocardial injection of culture medium (MI group) or 4 × 10 iPS-CMs (cell group) at the infarct border zone.
Transplantation
February 2019
Division of Surgery, Department of Cardiovascular Surgery, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Somatic stem cell (SC) therapy can improve cardiac performance following ischemic injury. In this study, we investigated whether induced pluripotent SC-derived cardiomyocytes (iPS-CMs) are more effective than somatic SCs, such as skeletal myoblasts (SM) and mesenchymal (M)SCs, in promoting functional recovery upon transplantation in a porcine model of myocardial infarction.
Methods: Myocardial injury was induced by ameroid ring placement in immunosuppressed female mini pigs; after 1 month, epicardial cell transplantation was performed with iPS-CMs (n = 7), SMs (n = 7), and MSCs (n = 7).
Stem Cell Res
March 2016
Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA. Electronic address:
Induced pluripotent stem (iPS) cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES) cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs) transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc), without antibiotic selection or MEF feeders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!