A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning algorithms for FPGA Implementation in biomedical engineering applications: A review. | LitMetric

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured by the user after manufacturing, making them suitable for customized hardware prototypes, a feature not available in general-purpose processors in Application Specific Integrated Circuits (ASIC). In this paper, we review the vast Machine Learning (ML) algorithms implemented on FPGAs to increase performance and capabilities in healthcare technology over 2001-2023. In particular, we focus on real-time ML algorithms targeted to FPGAs and hybrid System-on-a-chip (SoC) FPGA architectures for biomedical applications. We discuss how previous works have customized and optimized their ML algorithm and FPGA designs to address the putative embedded systems challenges of limited memory, hardware, and power resources while maintaining scalability to accommodate different network sizes and topologies. We provide a synthesis of articles implementing classifiers and regression algorithms, as they are significant algorithms that cover a wide range of ML algorithms used for biomedical applications. This article is written to inform the biomedical engineering and FPGA design communities to advance knowledge of FPGA-enabled ML accelerators for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906441PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26652DOI Listing

Publication Analysis

Top Keywords

biomedical applications
12
machine learning
8
learning algorithms
8
biomedical engineering
8
integrated circuits
8
algorithms
6
biomedical
5
fpga
4
algorithms fpga
4
fpga implementation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!