Resonant multiphoton processes and excitation limits to structural dynamics.

Struct Dyn

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3J1, Canada.

Published: March 2024

Understanding the chemical reactions that give rise to functional biological systems is at the core of structural biology. As techniques are developed to study the chemical reactions that drive biological processes, it must be ensured that the reaction occurring is indeed a biologically relevant pathway. There is mounting evidence indicating that there has been a propagation of systematic error in the study of photoactive biological processes; the optical methods used to probe the structural dynamics of light activated protein functions have failed to ensure that the photoexcitation prepares a well-defined initial state relevant to the biological process of interest. Photoexcitation in nature occurs in the linear (one-photon per chromophore) regime; however, the extreme excitation conditions used experimentally give rise to biologically irrelevant multiphoton absorption. To evaluate and ensure the biological relevance of past and future experiments, a theoretical framework has been developed to determine the excitation conditions, which lead to resonant multiphoton absorption (RMPA) and thus define the excitation limit in general for the study of structural dynamics within the 1-photon excitation regime. Here, we apply the theoretical model to bacteriorhodopsin (bR) and show that RMPA occurs when excitation conditions exceed the linear saturation threshold, well below typical excitation conditions used in this class of experiments. This work provides the guidelines to ensure excitation in the linear 1-photon regime is relevant to biological and chemical processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908556PMC
http://dx.doi.org/10.1063/4.0000239DOI Listing

Publication Analysis

Top Keywords

excitation conditions
16
structural dynamics
12
resonant multiphoton
8
excitation
8
chemical reactions
8
biological processes
8
relevant biological
8
multiphoton absorption
8
biological
6
processes
4

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Hydrogen gas (H) can be produced via entirely solar-driven photocatalytic water splitting (PWS). A promising set of organic materials for facilitating PWS are the so-called inverted singlet-triplet, INVEST, materials. Inversion of the singlet (S) and triplet (T) energies reduces the population of triplet states, which are otherwise destructive under photocatalytic conditions.

View Article and Find Full Text PDF

The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.

View Article and Find Full Text PDF

A rare phenomenon involving ventricular separation: a case report.

BMC Cardiovasc Disord

December 2024

Department of Electrocardiology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 WansongRoad, Wenzhou, 325200, People's Republic of China.

Background: Ventricular separation is a multipart, extensive disease of the heart that hinders the electrical conduction of the cardiac system ventricular muscle, causing a bidirectional conduction block. The occurrence of ventricular separation suggests that the myocardium is in a state of severe ischemia, and the prognosis is generally poor. Herein, we present arescue case in which the extremely rare phenomenon of ventricular separation developed and was documented in realtime.

View Article and Find Full Text PDF

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!